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Based on the fundamental equations of continuum mechanics, the concept of Hamil-
ton’s principle and the adoption of Eulerian and Lagrangian descriptions of fluid
and solid, respectively, variational principles admitting variable boundary conditions
are developed to model mathematically the nonlinear dynamical behaviour of the
responses and interactions between fluid and solid. The nonlinearity of the fluid
is introduced through nonlinear field equations and nonlinear boundary conditions
on the free surface and fluid–solid interaction interface. The structure is treated as
a nonlinear elastic body. This model assumes the fluid inviscid, incompressible or
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1064 J. T. Xing and W. G. Price

compressible and the fluid motion irrotational or rotational but isentropic along the
flow path of each fluid particle. The stationary conditions of the variational princi-
ples include the governing equations of nonlinear elastic dynamics, fluid dynamics
and those relating to the fluid–structure interaction interface as well as the imposed
boundary conditions. A family of variational principles are obtained depending on
the assumptions introduced into the mathematical model (i.e. fluid incompressible,
motion irrotational, etc.) and these provide a foundation to construct numerical
schemes of study to assess the dynamical behaviour of nonlinear fluid–solid inter-
action systems. Two simple illustrative examples are presented demonstrating the
applicability of the proposed theoretical approach.

1. Introduction

Fluid–structure interaction problems in engineering involve inter-disciplinary studies
relating to the fluid, flexible structure and their physical coupling mechanisms. The
assessment of the dynamical behaviour of the elastic structure and fluid requires the
formulation of a mathematical model representing the interactive mechanisms within
the continuum and the formulation of numerical analyses to evaluate the character-
istics of the dynamic system. In this paper this is achieved by the creation of a
theoretical model based on the fundamental principles of continuum mechanics, the
concept of Hamilton’s principle and through the development of variational principles
suitable for nonlinear fluid–structure interaction problems. These variational princi-
ples provide a mechanism for the transformation of the partial differential equations
governing the dynamics of a structure, fluid or fluid–structure interaction system,
defined by an appropriate set of physical variables (i.e. displacement, pressure, stress,
etc), into an alternative set of ordinary differential or algebraic equations amenable
to numerical analysis and hence, a numerical scheme of study. In this context, the
Galerkin method or, more generally, the weighted residual method provides an al-
ternative enabling role in the derivation of solutions to complex dynamical system
problems (see, for example, Oden 1972; Zienkiewicz & Taylor 1989, 1991).

For fluid mechanics type problems, investigations of variational principles resem-
bling Hamilton’s principle have been undertaken by Serrin (1959), Luke (1967),
Seliger & Whitham (1968) and Miles (1977). Luke incorporated a variable boundary
into a variational principle developed to generate the governing equations and to
analyse the behaviour of gravity waves in a two-dimensional incompressible fluid.
Seliger & Whitham did not examine the implications of variable boundaries but
concluded that the fluid pressure variable was the Lagrangian function within the
fluid variational principle. Ikegawa & Washizu (1973), utilizing the stream function,
introduced a variational principle to model an incompressible gravity flow with a free
surface using the finite element method whereas, Ecer et al. (1983), Ecer & Akay
(1983) and Ward et al. (1988) developed variational approaches to model incom-
pressible, viscous fluid flows.

For linear fluid–solid interaction problems, several different forms of variational
principles have been developed successfully to describe the dynamical behaviour of
rigid or flexible structures and a fluid with or without free surface (see, for ex-
ample, Xing 1984, 1986, 1988; Liu & Uras 1988; Xing & Price 1991; Bathe et al.
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1995; Morand & Ohayon 1995; Xing et al. 1996). For nonlinear fluid–solid interac-
tion problems, because of the complexities of the interactive mechanisms involved,
only limited advances have been achieved in deriving descriptions of the nonlinear
dynamical behaviour of both solid and fluid. Kock & Olson (1991) presented a finite
element method to analyse linear and nonlinear fluid–structure interaction problems
by adopting a variational indicator approach based on Hamilton’s principle for in-
viscid, irrotational and isentropic fluid flows throughout the fluid domain. In this
analysis, the entropy s is assumed constant in the whole fluid domain (rather than
a function of the space coordinate as assumed herein) and two Lagrangian multi-
pliers are introduced to make the global conservation of mass and the equation of
continuity valid at the same time.

In the construction of a variational description of the dynamical behaviour of a
nonlinear fluid–solid interacting system, two fundamental difficulties are encountered.
The first concerns the concept of local (or space) variation and material variation. In
an Eulerian description of the fluid field, all variables are functions of local coordi-
nates fixed in space and time whereas in the Lagrangian description of the structure
the motion variables are functions of the material coordinates fixed to each particle
or element of the structure and time. Thus when the structure moves, the material
coordinates also move from their original positions to new positions in space. These
differences are further extenuated when examining time differentials, time integrals,
etc. and therefore two kinds of arguments relating to fluid and structure must be
included in any proposed variational functional. The second difficulty relates to vari-
ational principles involving variable boundaries. For example, in a linear analysis
with all motions assumed very small, the boundary of the fluid domain during mo-
tion is assumed to be the same as the original boundary in stationary equilibrium.
In a nonlinear study involving large disturbances and a free fluid surface, such an
assumption is invalid and a variable boundary fluid domain must be included in the
mathematical model.

In this paper, variational principles to describe the nonlinear behaviour of fluid–
structure interaction systems are developed by constructing a unifying theory based
on the studies of Gelfand & Fomin (1963) and McIver (1973) relating to the concep-
tual difficulties previously discussed, variational principles and their applications in
fluid dynamics (Serrin 1959; Seliger & Whitham 1968; Miloh 1984; Rainey 1989; van
Daalen et al. 1992; Galper & Miloh 1995) and those for nonlinear solid mechanics
(Green & Zerna 1954; Oden & Reddy 1976; Washizu 1982; Xing & Price 1996). It is
assumed that the fluid is inviscid, incompressible or compressible, with or without
a free surface and its flow can be rotational or irrotational but isentropic along the
path of each fluid particle. The solid structure is treated as a nonlinear elastic body.

The stationary conditions of the variational principles formulated include the gov-
erning equations of nonlinear elastic dynamics, consistent relationships of motions
and equilibrium conditions on the fluid–solid interaction interface, the governing
equations for fluid dynamics and the associated boundary conditions, including those
associated with nonlinear free surface disturbances. These variational principles pro-
vide the base on which to develop numerical schemes of study to evaluate the non-
linear dynamical behaviour of the typical fluid–structure systems illustrated in fig-
ures 2–4. To demonstrate the applicability of the variational principles, by way of
example, two simple dynamical problems are investigated.
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1066 J. T. Xing and W. G. Price

2. Description of the motion of a continuum

In order to describe the motion and dynamic characteristics of a continuum (elastic
solid or fluid) in a three-dimensional space, suitable systems of reference are needed
(see, for example, Green & Adkins 1960; Truesdell 1966; Malvern 1970; Fung 1977).
To this end, the spatial coordinate system adopted is a fixed rectangular Cartesian
frame of reference with coordinate xi (i = 1, 2, 3). At time t = t1, a material particle
located at xi = Xi is identified by a set of ordered real numbers (X1, X2, X3), referred
to as the material coordinates. Since this is a symbolic coordinate used to identify
a material particle, it can be chosen in different ways. For example, this role may
be played by a field function α(x, t) representing a particular physical quantity of
the continuum. As time proceeds and the material particle moves from location to
location in the three-dimensional space, its history of motion can be represented by
the equation

xi = xi(X1, X2, X3, t) = xi(X, t). (2.1)
Mathematically, this equation defines a transformation of a domain Ω1(X, t1) into
a domain Ωt(X, t), treating time t as a parameter. It is assumed that an unique
inverse of this equation exists and the Jacobian J of the transformation is positive,
i.e.

Xi = Xi(x1, x2, x3, t) = Xi(x, t) (2.2)
and

J = |∂xi/∂Xj | > 0. (2.3)
If such an equation (2.1) or (2.2) is known for every particle in the continuum, then
the history of motion of the continuum is defined. In this paper, this material coordi-
nate description is used to describe the motion of the elastic solid. The displacement,
velocity and acceleration of each particle in the elastic body are therefore a function
of (Xi, t) and they take the following forms, respectively:

Ui(X, t) = xi −Xi, (2.4)

Vi(X, t) =
∂xi
∂t

∣∣∣∣
X

=
Dxi
Dt

= Ui,t, (2.5)

Wi(X, t) = Vi,t = Ui,tt. (2.6)

When describing the fluid flow, it is not necessary to identify the location of
every fluid particle during motion but rather the instantaneous velocity field and its
evolution with time. This leads to a spatial description in which the location x and
the time t are taken as independent variables and the instantaneous velocity field of
the fluid is represented by vi(x, t). By applying the material derivative definition to
the field function (), i.e.

D()
Dt

= (),t + vi(),i, (2.7)

the instantaneous acceleration field is given by

wi(x, t) =
Dvi(x, t)

Dt
= vi,t + vjvi,j =

∂vi(X, t)
∂t

. (2.8)

(a ) The translation velocity and transmission velocity of a curved surface in space
Let us consider a curved surface in space represented by the equation

f(x1, x2, x3, t) = f(x, t) = 0, (2.9)
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(a) (b)

Figure 1. Continuous change of the boundary of a moving region: (a) the case of θ = 0, i.e. a
material region and N = viηi; (b) the case of θ 6= 0 and the translation velocity N 6= viηi.

where f(x, t) is a continuously differentiable function. The differential of the function
f(x, t) takes the form

df = f,t dt+ f,i dxi (2.10)
and therefore

f,t dt+ | grad f |dr = 0. (2.11)
Here, dr = dxiηi represents the projection of the elemental length dxi onto the
normal vector ηi of the curved surface, where

ηi =
f,i

| grad f | . (2.12)

From equation (2.11), the translation velocity of the curved surface is defined by

N =
dr
dt

= − f,t
| grad f | . (2.13)

and the projection of the velocity vi of the continuum onto the normal vector ηi of
the surface takes the form

vη = viηi =
vif,i
| grad f | . (2.14)

From these results, the transmission velocity of the curved surface is defined by the
relative velocity

θ = N − vη = − Df/Dt
| grad f | . (2.15)

Physically, the translation velocity N of a curved surface is the velocity observed by
an observer standing on the fixed reference coordinate system, but the transmission
velocity θ represents the velocity observed by one standing on the material particle of
the continuum with flow velocity vi. Therefore, if θ = 0, this moving curved surface
is a material surface and if θ = −vη, it reduces to a fixed surface in space.

(b ) The time derivative of an integral over a moving volume in space
It is assumed that equation (2.9) represents a convex regular region Ω(x, t)

bounded by a surface Γ (x, t), consisting of a finite number of parts whose outer
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normals form a continuous vector field, and that all regions of the solid and fluid are
treated as regular. Let F (x, t) represent any continuously differentiable function in
Ω(x, t) and

I(t) =
∫

Ω(x,t)
F (x, t) dΩ (2.16)

denotes the volume integral of this function at time t. The function I(t) retains
dependence on t because both the integrand F (x, t) and the domain Ω(x, t) are
intrinsic functions of this parameter. As t varies, I(t) also varies and therefore there
exists the time derivative dI/dt. In visualising the evaluation of this quantity (see
figure 1), the boundary Γ of the region Ω at instant t translates with velocity N
to the neighbouring surface Γ ′ of the region Ω ′ at instant t+ ∆t. Thus in time ∆t,
the change in distance N∆t produces an elemental change in volume dΩ = N∆t dΓ .
Therefore, the time derivative of I is defined as

dI
dt

= lim
∆t→0

1
∆t

[ ∫
Ω ′
F (x, t+ ∆t) dΩ −

∫
Ω
F (x, t) dΩ

]
= lim

∆t→0

1
∆t

{∫
Ω

[F (x, t+ ∆t)− F (x, t)] dΩ +
∫

∆Ω
F (x, t+ ∆t) dΩ

}
=
∫

Ω
F,t dΩ + lim

∆t→0

1
∆t

∫
Γ
F (x, t+ ∆t)N∆t dΓ

=
∫

Ω
F,t dΩ +

∫
Γ
F (x, t)N dΓ . (2.17)

From equations (2.13) and (2.14), it follows that dI/dt can be rewritten as

dI
dt

=
∫

Ω
F,t dΩ +

∫
Γ
Fviηi dΓ +

∫
Γ
Fθ dΓ , (2.18)

defined at time t. If the transmission velocity θ = 0, the domain Ω is the material
domain ΩM and the time derivative of I(t) reduces to the material derivative of the
volume integral over the material domain. That is,

DI
Dt

=
∫

ΩM

F,t dΩ +
∫

ΓM

Fviηi dΓ =
∫

ΩM

[
DF
Dt

+ Fvi,i

]
dΩ , (2.19)

after applying Green’s theorem. From this result and subject to the continuum obey-
ing the continuity equation (see equation (3.14)), it follows that (see, for example,
Malvern 1970)

D
Dt

∫
ΩM

ρF dΩ =
∫

ΩM

ρ
DF
Dt

dΩ . (2.20)

If the transmission velocity θ = −vη = −viηi, the domain Ω reduces to the fixed
domain ΩF in space and the time derivative of I(t) reduces to the form

dI
dt

=
∫

ΩF

F,t dΩ . (2.21)

(c ) A local variation and a material variation
Let δx = δu(X, t) = δu(x, t) represent a virtual displacement of the particle X in

the continuum from its instantaneous position x. This perturbation is produced, say,
by an arbitrary small additional internal or external force. The vector function δu is
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assumed to be finite valued and continuously differentiable; moreover, it conforms to
any restrictions placed on the continuum position (e.g. kinematic constraints, etc.).
Due to the small displacement δx, a scalar or vector field denoted by φ = φ(x, t)
at position x changes to φ∗ = φ∗(x, t; ε) and the original particle at x, which is
now at the new position x∗ = x + εδx, acquires a field value of φ∗(x∗, t; ε). Here,
ε is an independent variation parameter, −1 < ε < 1. A local variation δφ in an
Eulerian description and a material variation δφ in a Lagrangian description of the
field function φ are defined, respectively, by Gelfand & Fomin (1963) to be

δφ =
∂φ∗(x, t; ε)

∂ε

∣∣∣∣
ε=0
∼ φ∗(x, t; ε)− φ(x, t; 0) (2.22)

and

δφ =
∂φ(X, t; ε)

∂ε

∣∣∣∣
ε=0

=
Dφ∗(x∗, t; ε)

Dε

∣∣∣∣
ε=0
∼ φ∗(x∗, t; ε)− φ(x, t; 0). (2.23)

Furthermore, they proved that there exists a relation between these variations of the
field function φ in the form

δφ = δφ+ δxiφ,i. (2.24)
It is observed that δx is the initial velocity in a motion for which ε plays the role
of time t. Hence the relation between the local and the material variations of a field
function () is similar to the formulation denoted by equation (2.7) to calculate the
material derivative of the velocity field vi(x, t). That is,

δ() = δ() + δxi(),i. (2.25)

From these findings it can be shown that all local field derivatives commute but the
material operators δ() and D()/Dt both relate to a particular particle. Therefore, the
following exchangeable and non-exchangeable relations with respect to differential
operations are valid:

δ(),i = [δ()],i, δ(),t = [δ()],t, δ

[
D()
Dt

]
6= D

Dt
[δ()],

δ(),i 6= [δ()],i, δ(),t 6= [δ()],t, δ

[
D()
Dt

]
=

D
Dt

[δ()],

δ

[
D()
Dt

]
= δ[(),t + vi(),i] = [δ()],t + (),iδvi + vi[δ()],i.


(2.26)

Moreover, by considering equations (2.19) and (2.20) for domain ΩF(x) and mate-
rial domain ΩM(x, t) in space, the following exchangeable relations with respect to
integral operations also exist:

δ

∫ t2

t1

() dt =
∫ t2

t1

δ() dt, δ

∫
ΩF(x)

() dΩ =
∫

ΩF(x)
δ() dΩ ,

δ

∫ t2

t1

() dt =
∫ t2

t1

δ() dt, δ

∫
ΩM(x,t)

ρ() dΩ =
∫

ΩM(x,t)
ρδ() dΩ ,

δ

∫
ΩM(x,t)

() dΩ =
∫

ΩM(x,t)
{δ() + ()[δxi],i} dΩ ,
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δ

∫
ΩM(x,t)

() dΩ(x, t) =
∫

ΩM(X,t1)
δ[()J ] dΩ(X, t1),

δ

∫
ΩS(X,t1)

() dΩ(X, t1) =
∫

ΩS(X,t1)
δ() dΩ(X, t1). (2.27)

In this paper, a local variation is adopted within the fluid domain and a material
variation is used in the solid domain. Therefore, for a function ()(X, t) defined in
the material coordinate, there also exists the exchangeable relations

δ

[
D()(X, t)

Dt

]
= δ

[
∂()(X, t)

∂t

]
= δ{[()(X, t)],t} = [δ()(X, t)],t,

δ

[
∂()(X, t)
∂Xi

]
= δ{[()(X, t)],i} = [δ()(X, t)],i. (2.28)

(d ) The local variation of an integral over a moving volume in space
Let the functional H[φ], defined over the moving region Ω(x, t) illustrated in

figure 1, be expressible in the following form:

H[φ] =
∫ t2

t1

∫
Ω(x,t)

F (φ, φ,t) dΩ dt (2.29)

where φ is a continuously differentiable function of (x, t). The local variation of this
functional is defined as

δH = lim
ε→0

1
ε
{H[φ+ εδφ]−H[φ]} (2.30)

where ε is an arbitrary constant independent of φ, x and t and δφ denotes any
arbitrary local variation of the function φ(x, t), independent of ε, satisfying the
conditions

δφ(t1) = 0 = δφ(t2). (2.31)
It is noted that when a local variation of the functional H[φ] is taken, the bound-
ary Γ (x, t) of the region Ω(x, t) also experiences a variation and that the integral
operation with respect to time t and the one with respect to space x are not inter-
changeable because the boundary Γ (x, t) moves. The substitution of equation (2.29)
into (2.30) gives the local variation of this functional δH in the form

δH = lim
ε→0

1
ε

∫ t2

t1

{∫
Ω(x+εδx,t)

F (φ+ εδφ, φ,t + εδφ,t) dΩ −
∫

Ω(x,t)
F (φ, φ,t) dΩ

}
dt

= lim
ε→0

1
ε

∫ t2

t1

{∫
Ω(x,t)

[F (φ+ εδφ, φ,t + εδφ,t)− F (φ, φ,t] dΩ

+
∫

∆Ω(x+εδx,t)
F (φ+ εδφ, φ,t + εδφ,t) dΩ

}
dt

=
∫ t2

t1

{∫
Ω(x,t)

δF dΩ + lim
ε→0

1
ε

∫
Γ(x,t)

F (φ+ εδφ, φ,t + εδφ,t)εδxiηi dΓ
}

dt

=
∫ t2

t1

{∫
Ω(x,t)

δF dΩ +
∫

Γ(x,t)
F (φ, φ,t)δxiηi dΓ

}
dt, (2.32)
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where, by comparison with figure 1, dΩ = εδxiηi dΓ . From equation (2.26), the first
integral can be rewritten as∫ t2

t1

∫
Ω(x,t)

δF dΩ dt =
∫ t2

t1

∫
Ω

[
∂F

∂φ
δφ+

∂F

∂φ,t
δφ,t

]
dΩ dt

=
∫ t2

t1

{∫
Ω

[
∂F

∂φ
−
(
∂F

∂φ,t

)
,t

]
δφ dΩ +

∫
Ω

(
∂F

∂φ,t
δφ

)
,t

dΩ
}

dt.

Using the relations expressed in equation (2.17), it follows that this equation becomes∫ t2

t1

{∫
Ω

[
∂F

∂φ
−
(
∂F

∂φ,t

)
,t

]
δφ dΩ −

∫
Γ

∂F

∂φ,t
Nδφ dΓ +

d
dt

∫
Ω

∂F

∂φ,t
δφ dΩ

}
dt

=
∫ t2

t1

{∫
Ω

[
∂F

∂φ
−
(
∂F

∂φ,t

)
,t

]
δφ dΩ −

∫
Γ

∂F

∂φ,t
Nδφ dΓ

}
dt+

{∫
Ω

∂F

∂φ,t
δφ dΩ

}∣∣∣∣t2
t1

=
∫ t2

t1

{∫
Ω(x,t)

[
∂F

∂φ
−
(
∂F

∂φ,t

)
,t

]
δφ dΩ −

∫
Γ

∂F

∂φ,t
Nδφ dΓ

}
dt, (2.33)

after application of the time terminal conditions given in equation (2.31). This ex-
pression, now dependent on the local variation δφ, is used in the development of the
variational principles in §4.

3. Governing equations

Figure 2 illustrates a selection of typical fluid–structure interaction systems under
investigation as well as the nomenclature adopted. The solid body is treated as a
nonlinear elastic structure and the fluid is assumed compressible, inviscid with motion
isentropic along the path of each fluid particle. To assess the dynamical behaviour
of a nonlinear coupled system, it is necessary to model mathematically the dynamic
characteristics of the flexible structure within the solid domain ΩS, the fluid with
free surface in fluid domain Ωf and the interacting mechanism at the fluid–structure
interface Σ . This is achieved by adopting the governing equations of continuum
mechanics and these are expressed in tensor notation as follows.

(a ) Solid domain
In a Lagrangian description of the motions of an elastic structure, a material

variation formulation is adopted. Therefore, the variables describing the dynamical
behaviour, e.g. displacement Ui, momentum Pi, stress σij , etc., are functions of the
material coordinates Xi fixed to each particle of the structure and time t. The equa-
tions governing the motions of the flexible structure are (see, for example, Green &
Zerna 1954; Washizu 1982)

(1) Dynamic equation,

τij,j + F̂i = Pi,t, (Xi, t)εΩS × (t1, t2), (3.1)

where the Piola stress tensor

τij = (δik + Ui,k)σkj , (Xi, t)εΩS × (t1, t2). (3.2)

(2) Strain–displacement and velocity–displacement relations,

Eij = 1
2(Ui,j + Uj,i + Uk,iUk,j), (Xi, t)εΩS × (t1, t2), (3.3)
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Figure 2. Fluid–structure interaction systems.

Vi = Ui,t, (Xi, t)εΩS × (t1, t2). (3.4)
(3) Constitutive equations,

σij = ∂A/∂Eij , (Xi, t)εΩS × (t1, t2), (3.5)

Pi = ∂B/∂Vi, (Xi, t)εΩS × (t1, t2). (3.6)

(4) Boundary conditions,

traction : τijνj = T̂i, (Xi, t)εST × [t1, t2], (3.7)

displacement : Ui = Ûi, (Xi, t)εSU × [t1, t2]. (3.8)

(b ) Fluid domain
In an Eulerian description of the fluid field, a local or space variation is used, such

that, the dynamical variables describing the behaviour of the fluid, e.g. velocity vi,
pressure p, mass density ρf , etc., are functions of the spatial coordinates xi and time
t. The equations describing the fluid motion are described below.

(i) State equation
The internal energy per unit mass of the fluid e is a defined function of the specific

volume υ, or the density ρf , and the specific entropy s and it relates to other ther-
modynamic quantities by the state equation (see, for example, Serrin 1959; Seliger
& Whitham 1968; Woods 1975)

de = T ds− pdυ, (3.9)

where T (ρf , s) is the temperature. The internal energy e and the specific enthalpy
ψ(s, p) of the fluid satisfy the Legendre transformation relation

e− ψ = −pυ = −p/ρf (3.10)
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and therefore
∂e

∂s
= T,

∂e

∂ρf
=

p

ρ2
f
, (3.11)

∂ψ

∂s
=
∂e

∂s
,

∂ψ

∂p
=

1
ρf
. (3.12)

These functions e and ψ are thermodynamic potentials measured relative to a ref-
erence state. For an ideal homogeneous gas, the pressure p = p0(ρf/ρf0)γ , where
subscript 0 denotes an initial uniform state (see, for example, Hunter 1976). If the
initial state is the reference state, then the internal energy is given by the equation

e =
∫ ρf

ρf0

−p0

(
ρf

ρf0

)γ
d
(

1
ρf

)
=

1
γ − 1

(
p

ρf
− p0

ρf0

)
. (3.13)

(ii) Equation of continuity

ρf,t + (ρfvi),i = 0, (xi, t)εΩf × (t1, t2). (3.14)

(iii) Conservation of energy
It is assumed that motion takes place without loss of energy through the generation

or transfer of heat, or, more precisely, that the specific entropy s of each fluid particle
remains constant during the motion, i.e.

Ds
Dt

= 0, (xi, t)εΩf × (t1, t2), (3.15)

or

(ρfs),t + (ρfsvi),i = 0, (xi, t)εΩf × (t1, t2). (3.16)

Here, the entropy s is treated as a function of the spatial coordinate xi and time t
within the total fluid domain and not as a constant, as assumed by Kock & Olson
(1991).

(iv) Conservation of the identity of particles
In an Eulerian description of motion, the fluid domain is occupied by different fluid

particles α at each point xi and time t. The identity coordinate of particle α is a field
function of xi and time t. As time passes, fluid particles change their positions, but
their identity coordinate α remains unchanged along the path of each particle (see
Lin 1963). Therefore, each coordinate satisfies the relation (see, for example, Seliger
& Whitham 1968)

Dα
Dt

= 0, (xi, t)εΩf × (t1, t2), (3.17)

or

(ρfα),t + (ρfαvi),i = 0, (xi, t)εΩf × (t1, t2). (3.18)

(v) Dynamic equation

− p,i
ρf

+ f̂i =
Dvi
Dt

, (xi, t)εΩf × (t1, t2), (3.19)
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where, for a gravitational body force,

f̂i = −(gxjδ3j),i, (xi, t)εΩf × (t1, t2). (3.20)

The Clebsch transformation (see, for example, Forsyth 1890; Lamb 1932) allows the
velocity of the fluid to be represented by the form

vi = φ,i + sβ,i + αζ,i. (3.21)

The quantities β, ζ and α are not uniquely defined by this expression, since any
perfect differential may be added to φ with consequent changes in β, α and ζ. The
vorticity ωi of the velocity field vi is given by

ωi = eijkvk,j = eijks,jβ,k + eijkα,jζ,k, (3.22)

from which it follows that the field function φ represents a velocity potential provided
the flow is irrotational, sβ,i produces a vorticity caused by the distribution of the
entropy s and αζ,i produces a vorticity caused by the distribution of the particles in
the fluid. By applying the material derivative operator in equation (2.7) to equation
(3.21) and using the results of equations (3.15) and (3.17), it follows that

Dvi
Dt

=
(

Dφ
Dt

+ s
Dβ
Dt

+ α
Dζ
Dt
− 1

2vjvj

)
,i

− s,iDβDt
− α,iDζDt

. (3.23)

The substitution of equations (3.20), (3.23) and equation ψ,i = p,i/ρf + s,i∂ψ/∂s,
obtained from equations (3.10) and (3.12), into the dynamic equation (3.19) gives(

1
2vjvj − ψ − gxjδ3j − Dφ

Dt
− sDβ

Dt
− αDζ

Dt

)
,i

= −s,i
(

Dβ
Dt

+
∂e

∂s

)
− α,iDζDt

. (3.24)

As noted previously, there remains a measure of arbitrariness for the chosen forms
of φ, β, α and ζ. An examination of this equation indicates that simplifications arise
if these variables satisfy the relations

Dζ
Dt

= 0,
Dβ
Dt

= −∂e
∂s

= −∂ψ
∂s

= −T, (3.25)

where Taub (1949) refers to β as the temperature displacement. Under these condi-
tions, it follows that(

1
2vjvj − ψ − gxjδ3j − Dφ

Dt
− sDβ

Dt
− αDζ

Dt

)
,i

= ϕ,i = 0, (3.26)

or
1
2vjvj − ψ − gxjδ3j − Dφ

Dt
− sDβ

Dt
− αDζ

Dt
= λ(t), (3.27)

where λ(t) represents a time dependent function. Its value depends on the reference
point used to calculate the potential ϕ in equation (3.26). For simplicity, let λ(t) = 0.
This implies that the point x0, for which ϕ(x0, t) = 0, is taken as the reference point
of the integration. Thus, the dynamic equation of fluid motion takes the form

1
2vjvj − ψ − gxjδ3j − Dφ

Dt
− sDβ

Dt
− αDζ

Dt
= 0, (xi, t)εΩf × (t1, t2). (3.28)

For a fluid motion assumed irrotational (sβ,i = 0 = αζ,i), this equation reduces to
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Bernoulli’s equation for unsteady flow
1
2φ,jφ,j + φ,t + ψ + gxjδ3j = 0, (xi, t)εΩf × (t1, t2), (3.29)

where ψ = p/ρf and λ(t) = 0.

(vi) Boundary conditions
On the free surface it is assumed that δuη denotes the normal component of the

virtual displacement δxi of the fluid particles such that δxiηi = δuη. Because of
the motion of the particles in the free surface, the variation δuη is arbitrary. If an
unknown equation

h(x1, x2, x3, t) = 0, (xi, t)εΓf × [t1, t2], (3.30)

describes the motion of the free surface, it follows that Dh/Dt = 0 because it is a
material surface. This implies, from equations (2.12)–(2.15), that θ = 0, N = viηi
and the kinematic condition on the free surface is given by the equation

N = − h,t
| gradh| = viηi = vi

h,i
| gradh| , (xi, t)εΓf × [t1, t2]. (3.31)

Because the pressure on the free surface is atmospheric, p = 0 and, using equations
(3.10), (3.28) and (3.29), the dynamic condition on the free surface is expressible in
the form

ρf

(
1
2vjvj − e− gxjδ3j − Dφ

Dt
− sDβ

Dt
− αDζ

Dt

)
= 0, (xi, t)εΓf × [t1, t2], (3.32)

for the fluid motion assumed rotational and, in the reduced form,

ρf(e+ 1
2φ,jφ,j + φ,t + gxjδ3j) = 0, (xi, t)εΓf × [t1, t2], (3.33)

for the irrotational case.
On the boundary Γv, for the fluid motion assumed rotational,

ρfviηi = ρ̂f v̂η, (xi, t)εΓv × [t1, t2], (3.34)

s = ŝ, α = α̂, (xi, t)εΓv × [t1, t2], (3.35)

whereas, for the irrotational case,

ρfφ,iη,i = ρ̂f v̂η, (xi, t)εΓv × [t1, t2]. (3.36)

On the boundary Γφ,

φ = φ̂, β = β̂, ζ = ζ̂, (xi, t)εΓφ × [t1, t2], (3.37)

for both rotational and irrotational cases.

Remark 3.1. On the free surface, alternative forms of boundary condition to
those expressed can be developed. By way of a simple example, let us assume the
fluid is incompressible (e = 0, ψ = p/ρf), the fluid motion irrotational and the free
surface disturbance

h(x1, x2, x3, t) = η(x1, x2, t)− x3 = 0,

where η(x1, x2, t) represents a surface wave disturbance. It follows from the kinematic
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condition
Dh
Dt

= 0 =
Dη
Dt
− Dx3

Dt
or

Dη
Dt

= v3 = φ,iδ3i,

equation (3.33)
η(x1, x2, t) = −1/g(φ,t + 1

2φ,jφ,j)
and through the manipulation of these two equations that

φ,tt + 2φ,iφ,ti + 1
2φ,i(φ,jφ,j),i + gφ,iδ3i = 0.

This equation represents the nonlinear boundary condition on the free surface, which,
on neglect of products of terms, reduces to the usual form of the linear surface
boundary condition with η = −φ,t/g.

(c ) Fluid–structure interface
Let us assume that there exists no discontinuity on the fluid–structure interaction

interface Σ during motions and the variation process. This implies that both the
virtual displacement δxi of the fluid and the virtual displacement δUi of the solid
have the same normal component at each point xi = Xi + Ui on the interaction
boundary Σ (i.e. δxiηi = −δUiνi = −δUν) and that the translation velocity of
the boundary Σ in the fluid domain equals the normal velocity of the solid on the
boundary Σ (i.e. N = Viηi). Therefore, the motion on the fluid–structure interaction
interface Σ satisfies the following imposed conditions on the velocity and pressure.

For fluid motion assumed rotational, the normal velocity satisfies the relation

viηi = Viηi = −Viνi, (xi, t)εΣ × [t1, t2], (3.38)

whereas, in the irrotational case,

φ,iηi = Viηi = −Viνi, (xi, t)εΣ × [t1, t2]. (3.39)

For the rotational case, the pressure satisfies the interface condition

ρf

(
1
2vjvj − e− gxjδ3j − Dφ

Dt
− sDβ

Dt
− αDζ

Dt

)
+ νiτijνj = 0, (xi, t)εΣ × [t1, t2],

(3.40)
and, for the irrotational case,

ρf(e+ gxjδ3j + φ,t + 1
2φ,jφ,j)− νiτijνj = 0, (xi, t)εΣ × [t1, t2]. (3.41)

The tangential force satisfies the relation

ξiτijνj = 0, (xi, t)εΣ × [t1, t2] (3.42)

for both rotational and irrotational cases involving an inviscid fluid.

(d ) Variational conditions at initial time t1 and final time t2
The variational conditions applied at initial time t1 and final time t2 take the

following forms. For the rotational case,

δφ(t1) = 0 = δφ(t2), xiεΩ̂f , (3.43)
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δβ(t1) = 0 = δβ(t2), xiεΩ̂f , (3.44)
δζ(t1) = 0 = δζ(t2), xiεΩ̂f , (3.45)
δUi(t1) = 0 = δUi(t2), XiεΩ̂S, (3.46)

and these reduce to

δφ(t1) = 0 = δφ(t2), xiεΩ̂f , (3.47)
δUi(t1) = 0 = δUi(t2), XiεΩ̂S (3.48)

for the irrotational case.

4. Variational principles

(a ) Fluid motion assumed rotational
From equation (3.22), it is found that the vorticity of the velocity field is caused

by the distribution of the entropy s and the distribution of the fluid particles α.
Therefore, when treating rotational motion, the equation of conservation of energy
represented in (3.15) and the equation of conservation of the identity of the fluid
particles in (3.17) must be considered. For example, in a simple incompressible flow
with constant entropy, (s,i = 0) assumed throughout the fluid domain, there exists
the possibility of a fluid flow being rotational. However, from relation (3.17) with
parameters α and ζ omitted from the mathematical model, the vorticity ωi ≡ 0
throughout the fluid domain implies a restriction to flows assumed irrotational with
the exclusion of all rotational possibilities. This proved a long-standing difficulty
in fluid dynamics until Lin (1963) perceived the necessity of introducing condition
(3.17) into a more general mathematical model as discussed by Seliger & Whitham
(1968).

(i) Compressible fluid with s,i 6≡ 0 in the fluid domain Ωf

It is found that amongst all the admissible solid displacement Ui satisfying the
strain–displacement relations in equation (3.3), the velocity–displacement relations
in equation (3.4), the displacement boundary condition in equation (3.8) and the
time instant conditions (3.46), as well as the admissible fluid field arguments ρf , vi,
φ, s, β, α, ζ satisfying equations (3.37), (3.43)–(3.45) and the function h describing
the free surface disturbance, the actual motion satisfying the governing equations in
(3.1), (3.7), (3.14), (3.16), (3.18), (3.21), (3.25), (3.28), (3.31), (3.32), (3.34), (3.35),
(3.38), (3.40) and (3.42) makes the 9-argument functional

H9[ρf , vi, φ, s, β, α, ζ, h, Ui]

=
∫ t2

t1

{∫
Ωf

ρf

(
1
2vjvj − e− gxjδ3j − Dφ

Dt
− sDβ

Dt
− αDζ

Dt

)
dΩ

+
∫

Γv
ρ̂f v̂η(φ+ ŝβ + α̂ζ) dΓ

}
dt

−
∫ t2

t1

{∫
ΩS

[A(Eij)−B(Vi)− UiF̂i] dΩ −
∫
ST

T̂iUi dS
}

dt (4.1)

stationary, if the constitutive relations expressed in equations (3.5), (3.6), (3.10),
(3.11) and (3.12) are satisfied.
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In deriving the proof of this variational principle, it is noted that the fluid do-
main Ωf is a moving domain in space since the free surface Γf and the fluid–solid
interaction boundary Σ change during motion, but the material domain ΩS of the
elastic structure, with respect to the material coordinates Xi, remains unchanged.
For these reasons, the free surface disturbance function h appears as an argument of
the functional. By taking the local variation of the integral over the fluid domain Ωf
and the material variation of the integral over the solid domain ΩS, the variation of
this functional is given by

δ(fs)H9[ρf , vi, φ, s, β, α, ζ, h, Ui]

=
∫ t2

t1

{∫
Ωf

δ

[
ρf

(
1
2vjvj − e− gxjδ3j − Dφ

Dt
− sDβ

Dt
− αDζ

Dt

)]
dΩ

+
∫

Γf∪Σ
ρf

(
1
2vjvj − e− gxjδ3j − Dφ

Dt
− sDβ

Dt
− αDζ

Dt

)
δxiηi dΓ

+
∫

Γv
ρ̂f v̂ηδ(φ+ ŝβ + α̂ζ) dΓ

}
dt

−
∫ t2

t1

{∫
ΩS

δ(A−B − UiF̂i) dΩ −
∫
ST

T̂iδUi dS
}

dt

=
∫ t2

t1

{∫
Ωf

δρf

(
1
2vjvj − ψ − gxjδ3j − Dφ

Dt
− sDβ

Dt
− αDζ

Dt

)
dΩ

+
∫

Ωf

ρf

[
vjδvj −

(
∂e

∂s
+

Dβ
Dt

)
δs− δ

(
Dφ
Dt

)
−sδ

(
Dβ
Dt

)
− Dζ

Dt
δα− αδ

(
Dζ
Dt

)]
dΩ

+
∫

Γf∪Σ
ρf

(
1
2vjvj − e− gxjδ3j − Dφ

Dt
− sDβ

Dt
− αDζ

Dt

)
δxiηidΓ

+
∫

Γv
ρ̂f v̂η(δφ+ ŝδβ + α̂δζ) dΓ

}
dt

−
∫ t2

t1

{∫
ΩS

(σijδEij − PiδVi − δUiF̂i) dΩ −
∫
ST

T̂iδUi dS
}

dt. (4.2)

In deriving these relations, equations (2.27) and (2.32) are used to calculate the local
variations δ() or material variations δ(), in addition to the non-variational constraint
conditions given in equations (3.5), (3.6), (3.10), (3.11) and (3.12).

From equations (2.26), (3.3) and (3.4), the following additional relations are ob-
tained:

ρfδ

(
Dφ
Dt

)
= (ρfδφ),t + (ρfviδφ),i − [ρf,t + (ρfvi),i]δφ+ ρfφ,iδvi,

ρfsδ

(
Dβ
Dt

)
= (ρfsδβ),t + (ρfsviδβ),i − [(ρfs),t + (ρfsvi),i]δβ + ρfsβ,iδvi,

ρfαδ

(
Dζ
Dt

)
= (ρfαδζ),t + (ρfαviδζ),i − [(ρfα),t + (ρfαvi),i]δζ + ρfαζ,iδvi,

σijδEij = τijδUi,j , PiδVi = PiδUi,t. (4.3)
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The substitution of these results into equation (4.2), the application of Green’s the-
orem (Σ assumed continuous) and the application of equation (2.17) to the terms
(ρfδφ),t, (ρfsδβ),t and (ρfαδζ),t associated with the moving space domain Ωf , to-
gether with the substitution δxiηi = δuη (≡ δxih,i/| gradh|) on the free surface Γf ,
allows the variation of the functional H9 to be expressed as

δ(fs)H9[ρf , vi, φ, s, β, α, ζ, h, Ui]

=
∫ t2

t1

{∫
Ωf

[
δρf

(
1
2vjvj − ψ − gxjδ3j − Dφ

Dt
− sDβ

Dt
− αDζ

Dt

)
×[ρf,t + (ρfvi),i]δφ+ [(ρfs),t + (ρfsvi),i]δβ + [(ρfα),t + (ρfαvi),i]δζ

+ρf(vi − φ,i − sβ,i − αζ,i)δvi − ρf

(
∂e

∂s
+

Dβ
Dt

)
δs− ρf

Dζ
Dt

δα

]
dΩ

+
∫

Γf

[
ρf

(
1
2vjvj − e− gxjδ3j − Dφ

Dt
− sDβ

Dt
− αDζ

Dt

)
δuη

+ρf(N − viηi)(δφ+ sδβ + αδζ)
]

dΓ

−
∫

Γφ

ρfviηi(δφ+ sδβ + αδζ) dΓ

−
∫

Γv
[(ρfviηi − ρ̂f v̂η)δφ+ (ρfsviηi − ρ̂f ŝv̂η)δβ + (ρfαviηi − ρ̂f α̂v̂η)δζ] dΓ

}
dt

+
∫ t2

t1

{∫
ΩS

(τij,j − Pi,t + F̂i)δUi dΩ

−
∫
ST

(τijνj − T̂i)δUi dS −
∫
SU

τijνjδUi dS
}

dt

−
∫ t2

t1

∫
Σ

{[
ρf

(
1
2vjvj − e− gxjδ3j − Dφ

Dt
− sDβ

Dt
− αDζ

Dt

)
+ νiτijνj

]
δUν

−ξiτijνjδUξ + ρf(Viηi − viηi)(δφ+ sδβ + αδζ)
}

dΣ dt

−
{∫

ΩS

PiδUi dΩ +
∫

Ωf

ρf(δφ+ sδβ + αδζ) dΩ
}∣∣∣∣t2

t1

. (4.4)

Through the variational conditions expressed in equations (3.43)–(3.46) at time
instants t1 and t2, conditions (3.37) over the boundary Γφ and the displacement
boundary condition of equation (3.8), the integrals over Γφ and SU , as well as the
last term in equation (4.4), vanish. Further, because of the independence of the
variations δφ, δs, δβ, δα, δζ, δρf , δvi in the fluid domain Ωf , the variations δφ, δβ,
δζ over the boundaries Γf , Γv and Σ , the variation δuη on the free surface Γf , the
variations δUi in the solid domain ΩS and over the boundary ST and the variations
δUν and δUξ over the fluid–structure interaction surface Σ , equations (3.1), (3.7),
(3.14), (3.16), (3.18), (3.21), (3.25), (3.28), (3.31), (3.32), (3.34), (3.35), (3.38), (3.40)
and (3.42) result when δ(fs)H9 = 0, and vice versa.
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Remark 4.1. If the Clebsch transformation expressed in equation (3.21) is con-
sidered as a constraint condition on the functional H9 represented in equation (4.1),
the alternative functional with 8-arguments (ρf , φ, s, β, α, ζ, h, Ui) can be derived

H8[ρf , φ, s, β, α, ζ, h, Ui]

=
∫ t2

t1

{∫
Ωf

ρf [− 1
2(φ,i + sβ,i + αζ,i)(φ,i + sβ,i + αζ,i)

− φ,t − sβ,t − αζ,t − e− gxjδ3j ] dΩ +
∫

Γv
ρ̂f v̂η(φ+ ŝβ + α̂ζ) dΓ

}
dt

−
∫ t2

t1

{∫
ΩS

[A(Eij)−B(Vi)− UiF̂i] dΩ −
∫
ST

T̂iUi dS
}

dt, (4.5)

in which the fluid velocity vi is excluded from the variational arguments.
The variational constraint conditions on this functional are given in equations

(3.3), (3.4), (3.8), (3.37), (3.21) and (3.43)–(3.46) and its stationary conditions are
represented in equations (3.1), (3.7), (3.14), (3.16), (3.18), (3.25), (3.28), (3.31),
(3.32), (3.34), (3.35), (3.38), (3.40) and (3.42), in which vi and the material deriva-
tives D()/Dt are replaced by their equivalent expressions through equations (3.21)
and (2.7), respectively.

Remark 4.2. The replacement of the internal fluid energy e with the enthalpy ψ
and the pressure p by expression ψ − p/ρf in equation (3.10) allows the functionals
H9 in (4.1) and H8 in (4.5) to be replaced, respectively, by

H10p[p, ρf , vi, φ, s, β, α, ζ, h, Ui]

=
∫ t2

t1

{∫
Ωf

ρf

(
1
2vjvj − ψ +

p

ρf
− gxjδ3j

−Dφ
Dt
− s

Dβ
Dt
− αDζ

Dt

)
dΩ +

∫
Γv
ρ̂f v̂η(φ+ ŝβ + α̂ζ) dΓ

}
dt

−
∫ t2

t1

{∫
ΩS

[A(Eij)−B(Vi)− UiF̂i] dΩ −
∫
ST

T̂iUi dS
}

dt (4.6)

and
H9p[p, ρf , φ, s, β, α, ζ, h, Ui]

=
∫ t2

t1

{∫
Ωf

ρf [− 1
2(φ,i + sβ,i + αζ,i)(φ,i + sβ,i + αζ,i)

−φ,t − sβ,t − αζ,t − ψ + (p/ρf)− gxjδ3j ] dΩ

+
∫

Γv
ρ̂f v̂η(φ+ ŝβ + α̂ζ) dΓ

}
dt

−
∫ t2

t1

{∫
ΩS

[A(Eij)−B(Vi)− UiF̂i] dΩ −
∫
ST

T̂iUi dS
}

dt. (4.7)

Here, the pressure p is introduced into the variational arguments and the constitutive
equation represented in the second equation of (3.12) is now one of the stationary
conditions. The variational constraint conditions and stationary conditions are the
same as those applied to the functionals H9 and H8, respectively.
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Remark 4.3. Equations (3.3), (3.4), (3.8), (3.37) are the variational constraint
conditions applicable to the functional H10p in equation (4.6). A relaxation of these
conditions is achieved through use of the Lagrangian multiplier method (for ex-
ample, see, Courant & Hilbert 1962). By this means, the following functional with
14-arguments (p, ρf , vi, φ, s, β, α, ζ, h, Ui, σij , Eij , Pi, Vi) is obtained:

H14[p, ρf , vi, φ, s, β, α, ζ, h, Ui, σij , Eij , Pi, Vi]

=
∫ t2

t1

{∫
Ωf

ρf

(
1
2vjvj − ψ +

p

ρf
− gxjδ3j − Dφ

Dt
− sDβ

Dt
− αDζ

Dt

)
dΩ

+
∫

Γv
ρ̂f v̂η(φ+ ŝβ + α̂ζ) dΓ

+
∫

Γφ

ρfviηi[(φ− φ̂) + s(β − β̂) + α(ζ − ζ̂)] dΓ
}

dt

−
∫ t2

t1

{∫
ΩS

[A(Eij)−B(Vi)− UiF̂i + Pi(Vi − Ui,t)

−σij(Eij − 1
2(Ui,j + Uj,i + Uk,iUk,j))] dΩ

−
∫
ST

T̂iUi dS −
∫
SU

τijνj(Ui − Ûi) dS
}

dt. (4.8)

The variational constraint conditions of this functional at times t1 and t2 reduce
to the conditions given in equations (3.43)–(3.46). The stationary conditions of this
functional include all the governing equations of fluid–structure dynamic interaction
problems.

Remark 4.4. The variational constraint conditions at times t1 and t2 given in
equations (3.43)–(3.46) can also be released, if four time conditions at times t1 and
t2 are considered (see Xing & Price 1992).

(ii) Compressible fluid with s,i ≡ 0 throughout the fluid domain Ωf

If the entropy s of the fluid is treated as constant throughout the fluid domain
Ωf , equation (3.15) is automatically satisfied and s,i ≡ 0 in Ωf . From this condition,
the vorticity ωi in equation (3.22) is independent of the entropy s and the fluid field
velocity vi can be represented as

vi = φ,i + αζ,i, (4.9)

because the term sβ,i in equation (3.21) can be absorbed into φ,i. In this case, the
functionals H9 in (4.1), H8 in (4.5), H10p in (4.6), H9p in (4.7) and H14 in (4.8),
respectively, reduce to the following forms:

H7[ρf , vi, φ, α, ζ, h, Ui]

=
∫ t2

t1

{∫
Ωf

ρf

(
1
2vjvj − e− gxjδ3j − Dφ

Dt
− αDζ

Dt

)
dΩ

+
∫

Γv
ρ̂f v̂η(φ+ α̂ζ) dΓ

}
dt

−
∫ t2

t1

{∫
ΩS

[A(Eij)−B(Vi)− UiF̂i] dΩ −
∫
ST

T̂iUi dS
}

dt, (4.10)
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H6[ρf , φ, α, ζ, h, Ui]

=
∫ t2

t1

{∫
Ωf

ρf [−1
2(φ,i + αζ,i)(φ,i + αζ,i)

−φ,t − αζ,t − e− gxjδ3j ] dΩ +
∫

Γv
ρ̂f v̂η(φ+ α̂ζ) dΓ

}
dt

−
∫ t2

t1

{∫
ΩS

[A(Eij)−B(Vi)− UiF̂i] dΩ −
∫
ST

T̂iUi dS
}

dt, (4.11)

H8p[p, ρf , vi, φ, α, ζ, h, Ui]

=
∫ t2

t1

{∫
Ωf

ρf

(
1
2vjvj − ψ +

p

ρf
− gxjδ3j − Dφ

Dt
− αDζ

Dt

)
dΩ

+
∫

Γv
ρ̂f v̂η(φ+ α̂ζ) dΓ

}
dt

−
∫ t2

t1

{∫
ΩS

[A(Eij)−B(Vi)− UiF̂i] dΩ −
∫
ST

T̂iUi dS
}

dt, (4.12)

H7p[p, ρf , φ, α, ζ, h, Ui]

=
∫ t2

t1

{∫
Ωf

ρf [−1
2(φ,i + αζ,i)(φ,i + αζ,i)

−φ,t − αζ,t − ψ + (p/ρf)− gxjδ3j ] dΩ +
∫

Γv
ρ̂f v̂η(φ+ α̂ζ) dΓ

}
dt

−
∫ t2

t1

{∫
ΩS

[A(Eij)−B(Vi)− UiF̂i] dΩ −
∫
ST

T̂iUi dS
}

dt, (4.13)

and
H12[p, ρf , vi, φ, α, ζ, h, Ui, σij , Eij , Pi, Vi]

=
∫ t2

t1

{∫
Ωf

ρf

(
1
2vjvj − ψ +

p

ρf
− gxjδ3j − Dφ

Dt
− αDζ

Dt

)
dΩ

+
∫

Γv
ρ̂f v̂η(φ+ α̂ζ) dΓ +

∫
Γφ

ρfviηi[(φ− φ̂) + α(ζ − ζ̂)] dΓ
}

dt

−
∫ t2

t1

{∫
ΩS

[A(Eij)−B(Vi)− UiF̂i + Pi(Vi − Ui,t)

−σij(Eij − 1
2(Ui,j + Uj,i + Uk,iUk,j))] dΩ

−
∫
ST

T̂iUi dS −
∫
SU

τijνj(Ui − Ûi) dS
}

dt. (4.14)

For these functionals, the applied variational constraint and stationary conditions
correspond to those of the original functionals with all terms associated with entropy
s and β excluded.

(iii) Incompressible fluid
For an incompressible fluid, the fluid density is a prescribed constant, ρf = ρ̃f

(say), the variation δρ̃f ≡ 0 and the equation of continuity expressed in equation
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(3.14) reduces to the form

vi,i = 0. (4.15)

The replacement of ρf by ρ̃f in the expressions derived for the functionals in §4 a (i)
and §4 a (ii) allows the corresponding functionals for an incompressible fluid to be
obtained. For example, for functional H9 in equation (4.1), it follows that

H̃8[vi, φ, s, β, α, ζ, h, Ui]

=
∫ t2

t1

{∫
Ωf

ρ̃f

(
1
2vjvj − e− gxjδ3j − Dφ

Dt
− sDβ

Dt
− αDζ

Dt

)
dΩ

+
∫

Γv
ρ̃f v̂η(φ+ ŝβ + α̂ζ) dΓ

}
dt

−
∫ t2

t1

{∫
ΩS

[A(Eij)−B(Vi)− UiF̂i] dΩ −
∫
ST

T̂iUi dS
}

dt. (4.16)

It is noted that the internal energy of an incompressible fluid is a function of the
variable s only, so that e ≡ 0 if s,i ≡ 0 throughout the fluid domain Ωf . Therefore,
for ρf = ρ̃f and s,i ≡ 0, the terms e and ψ−p/ρf in the functionals in §4 a (ii) vanish,
respectively. For example, it follows that

H̃5[φ, α, ζ, h, Ui]

=
∫ t2

t1

{∫
Ωf

ρ̃f [−1
2(φ,i + αζ,i)(φ,i + αζ,i)− φ,t − αζ,t − gxjδ3j ] dΩ

+
∫

Γv
ρ̃f v̂η(φ+ α̂ζ) dΓ

}
dt

−
∫ t2

t1

{∫
ΩS

[A(Eij)−B(Vi)− UiF̂i] dΩ −
∫
ST

T̂iUi dS
}

dt (4.17)

is obtained from functional H6 in equation (4.11) and

H̃6p[p, φ, α, ζ, h, Ui]

=
∫ t2

t1

{∫
Ωf

ρ̃f [−1
2(φ,i + αζ,i)(φ,i + αζ,i)− φ,t − αζ,t − gxjδ3j ] dΩ

+
∫

Γv
ρ̃f v̂η(φ+ α̂ζ) dΓ

}
dt

−
∫ t2

t1

{∫
ΩS

[A(Eij)−B(Vi)− UiF̂i] dΩ −
∫
ST

T̂iUi dS
}

dt (4.18)

from H7p in equation (4.13).
The introduction of the incompressible condition excludes the equation of fluid

motion, expressed in equation (3.28), from the stationary conditions of the associ-
ated functionals. This is because the velocity field vi of an incompressible flow can
be solved independently of the pressure p. The latter being determined from the
dynamic equation after the evaluation of the velocity vi through the variation of the
functionals.
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(b ) Fluid flow assumed irrotational
In this situation, the fluid field velocity is given by

vi = φ,i, (4.19)
corresponding to the case sβ,i = 0 = αζ,i in equation (3.21). Furthermore, the
internal energy e of the fluid depends only on the fluid density ρf , whereas the
enthalpy ψ depends only on pressure p. Therefore, the variational principles for an
irrotational fluid flow are derived as special cases of the variational principles for
the rotational examples given in §4 a. These variational principles are described as
follows.

(i) Compressible fluid
From functional H9 it is concluded that amongst all the admissible solid displace-

ment Ui satisfying the strain–displacement relations in equation (3.3), the velocity–
displacement relations in equation (3.4), the displacement boundary condition in
equation (3.8) and the time instant conditions (3.48), as well as the admissible fluid
field arguments ρf , vi and φ satisfying equations the first equation of (3.37) and
(3.47) and the function h describing the free surface disturbance, the actual motion
satisfying the governing equations in (3.1), (3.7), (3.14), (4.19), (3.29), (3.31), (3.33),
(3.36), (3.39), (3.41) and (3.42) makes the 5-argument functional

Π5[ρf , vi, φ, h, Ui] =
∫ t2

t1

{∫
Ωf

ρf

(
1
2vjvj − e− gxjδ3j − Dφ

Dt

)
dΩ +

∫
Γv
ρ̂f v̂ηφ dΓ

}
dt

−
∫ t2

t1

{∫
ΩS

[A(Eij)−B(Vi)− UiF̂i] dΩ −
∫
ST

T̂iUi dS
}

dt. (4.20)

stationary, if the constitutive relations expressed in equations (3.5), (3.6) and the
second equation of (3.11) are satisfied.

Remark 4.5. If the representation expressed in equation (4.19) is considered
a constraint condition on the functional Π5, then the 4-argument (ρf , φ, h, Ui)
functional

Π4[ρf , φ, h, Ui] =
∫ t2

t1

{∫
Ωf

ρf [−1
2
φ,iφ,i − φ,t − e− gxjδ3j ] dΩ +

∫
Γv
ρ̂f v̂ηφ dΓ

}
dt

−
∫ t2

t1

{∫
ΩS

[A(Eij)−B(Vi)− UiF̂i] dΩ −
∫
ST

T̂iUi dS
}

dt (4.21)

is derived. The variational constraint and stationary conditions of this functional are
those of the functional Π5 except that equation (4.19) is now treated as a variational
constraint condition and vi is replaced by φ,i in the stationary conditions.

Remark 4.6. A repeat of the argument used to derive H10p in equation (4.6) and
H9p in equation (4.7) allows functionals Π5 and Π4 to be replaced by functionals Π6p
and Π5p, respectively, having pressure p as an additional argument. That is,

Π6p[p, ρf , vi, φ, h, Ui]

=
∫ t2

t1

{∫
Ωf

ρf

(
1
2vjvj − ψ +

p

ρf
− gxjδ3j − Dφ

Dt

)
dΩ +

∫
Γv
ρ̂f v̂ηφdΓ

}
dt

−
∫ t2

t1

{∫
ΩS

[A(Eij)−B(Vi)− UiF̂i] dΩ −
∫
ST

T̂iUi dS
}

dt (4.22)
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and

Π5p[p, ρf , φ, h, Ui]

=
∫ t2

t1

{∫
Ωf

ρf

[
−1

2φ,iφ,i − φ,t − ψ +
p

ρf
− gxjδ3j

]
dΩ +

∫
Γv
ρ̂f v̂ηφ dΓ

}
dt

−
∫ t2

t1

{∫
ΩS

[A(Eij)−B(Vi)− UiF̂i] dΩ −
∫
ST

T̂iUi dS
}

dt. (4.23)

The variational constraint conditions and the stationary conditions of these two
functionals are those derived for the functionals Π5 in (4.20) and Π4 in (4.21), re-
spectively.

Remark 4.7. By repeating the derivation of functional H14 in equation (4.8)
to functional Π6p, the following 10-argument (p, ρf , vi, φ, h, Ui, σij , Eij , Pi, Vi)
functional is obtained:

Π10[p, ρf , vi, φ, h, Ui, σij , Eij , Pi, Vi]

=
∫ t2

t1

{∫
Ωf

ρf

(
1
2vjvj − ψ +

p

ρf
− gxjδ3j − Dφ

Dt

)
dΩ

+
∫

Γv
ρ̂f v̂ηφ dΓ +

∫
Γφ

ρfviηi(φ− φ̂) dΓ
}

dt

−
∫ t2

t1

{∫
ΩS

[A(Eij)−B(Vi)− UiF̂i + Pi(Vi − Ui,t)

−σij(Eij − 1
2(Ui,j + Uj,i + Uk,iUk,j))] dΩ

−
∫
ST

T̂iUi dS −
∫
SU

τijνj(Ui − Ûi) dS
}

dt. (4.24)

The only variational constraint conditions on this functional are the variational condi-
tions at times t1 and t2 given in equations (3.47) and (3.48). Its stationary conditions
include all the governing equations of the fluid–structure dynamic interaction prob-
lem expressed in equations (3.1)–(3.8), the second equation of (3.12), (3.14), (4.19),
(3.29), (3.31), (3.33), (3.36), the first equation of (3.37), (3.39), (3.41) and (3.42).

Remark 4.8. The variational constraint conditions at times t1 and t2 given in
equations (3.47) and (3.48) can also be released (see Xing & Price 1992).

(ii) Incompressible fluid
The substitution of ρf = ρ̃f and e = ψ−p/ρf ≡ 0 in §4 b (i) produces the functional

descriptions of an incompressible fluid. That is, functional Π5 in equation (4.20) (or
Π6p in equation (4.22)), Π4 in equation (4.21) (or Π5p in equation (4.23)) and Π10 in
equation (4.24) reduce to the respective forms

Π̃4[vi, φ, h, Ui]

=
∫ t2

t1

{∫
Ωf

ρ̃f

(
1
2vjvj − gxjδ3j − Dφ

Dt

)
dΩ +

∫
Γv
ρ̃f v̂ηφ dΓ

}
dt

−
∫ t2

t1

{∫
ΩS

[A(Eij)−B(Vi)− UiF̂i] dΩ −
∫
ST

T̂iUi dS
}

dt, (4.25)

Phil. Trans. R. Soc. Lond. A (1997)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


1086 J. T. Xing and W. G. Price

Π̃3[φ, h, Ui]

=
∫ t2

t1

{∫
Ωf

ρ̃f [−1
2φ,iφ,i − φ,t − gxjδ3j ] dΩ +

∫
Γv
ρ̃f v̂ηφ dΓ

}
dt

−
∫ t2

t1

{∫
ΩS

[A(Eij)−B(Vi)− UiF̂i] dΩ −
∫
ST

T̂iUi dS
}

dt (4.26)

and

Π̃8[vi, φ, h, Ui, σij , Eij , Pi, Vi]

=
∫ t2

t1

{∫
Ωf

ρ̃f

(
1
2vjvj − gxjδ3j − Dφ

Dt

)
dΩ

+
∫

Γv
ρ̃f v̂ηφ dΓ +

∫
Γφ

ρ̃fviηi(φ− φ̂) dΓ
}

dt

−
∫ t2

t1

{∫
ΩS

[A(Eij)−B(Vi)− UiF̂i + Pi(Vi − Ui,t)

−σij(Eij − 1
2(Ui,j + Uj,i + Uk,iUk,j))] dΩ

−
∫
ST

T̂iUi dS −
∫
SU

τijνj(Ui − Ûi) dS
}

dt. (4.27)

(c ) Discussions
The previously developed variational principles for nonlinear dynamical fluid–solid

interaction systems are based on the concept of Hamilton’s principle. They reduce
to functionals describing the dynamics of either solid or fluid treated separately or
fluid–structure interaction; this is now briefly discussed.

(i) Fluid domain Ωf and its boundary Γv excluded
The functionals expressed in equations (4.1), (4.5)–(4.7), (4.10)–(4.13), (4.16)–

(4.18), (4.20)–(4.23), (4.25), (4.26) reduce to the principle of potential energy in solid
mechanics (see, for example, Green & Zerna 1954; Washizu 1982) and the functionals
given in equations (4.14), (4.24), (4.27) reduce to the dynamical form of Hu–Washizu
principle in solid mechanics (see, for example, Washizu 1982; Xing 1984).

(ii) Solid domain Ωs and its boundary ST excluded
On the assumptions of neglecting gravity potential and that all variations are taken

to vanish on the boundary as adopted by Seliger & Whitham (1968), the functional
in equation (4.1) reduces to

H9[ρf , vi, φ, s, β, α, ζ] =
∫ t2

t1

{∫
Ωf

ρf

(
1
2vjvj − e−

Dφ
Dt
− sDβ

Dt
− αDζ

Dt

)
dΩ
}

dt,

(4.28)
where the integrand is the Lagrangian density, i.e. pressure as shown by Seliger &
Whitham (1968).

The associated form of the functional in equation (4.26) for a two-dimensional
incompressible inviscid fluid flow assumed irrotational produces the variational prin-
ciple developed by Luke (1967) accounting for variable boundaries, of which a dy-
namical equivalent was given by Miles (1977).
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Figure 3. A one-dimensional water–mass–spring interaction system

(iii) Special cases for fluid–solid interaction
The functional Π4 expressed in equation (4.21) is similar to the one presented by

Kock & Olson (1991) except that the global conservation of fluid mass is included
in their functional. Since this conservation relationship can be obtained through
the equation of continuity in the functional, the present analysis shows that this
additional requirement is a redundancy within the functional.

(iv) Linear models
Based on the assumption of linearity, the variational principles developed for non-

linear problems reduce to the corresponding principles for linear fluid–solid interac-
tion problems (see, for example, Xing 1988; Morand & Ohayon 1995).

5. Examples of application

The two examples chosen are of an elementary nature but they illustrate the
application of the variational principles to dynamic interaction problems without
the necessity of becoming engaged in numerical analysis as would be the case if more
realistic examples were examined.
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(a ) A one-dimensional water–mass–spring interaction problem
Figure 3 illustrates the one-dimensional fluid–structure interaction system under

examination. It consists of a water column of height L = X2 −X1 with free surface,
a piston of mass M and of unit sectional area and a spring of stiffness K. The
water is assumed incompressible, of density ρ̃f = 1, and the fluid flow irrotational. In
equilibrium, x = X1 and x = X2 denote the bottom and top positions of the water
column which at any time t during motion move to positions x1 and x2, respectively.
If X0 represents the position of the top face of the piston when the spring is in
its non-stretched state, the potential energy of the spring in its compressed state is
1
2K(x1 −X0)2.

For this problem, the functional Π̃3 expressed in equation (4.26) takes the form

Π̃3e[φ, x2, x1] =
∫ t2

t1

∫ x2

x1

[− 1
2φ,xφ,x − φ,t − gx] dxdt

−
∫ t2

t1

[
1
2K(x1 −X0)2 − 1

2M

(
dx1

dt

)2

+Mgx1

]
dt. (5.1)

The boundaries at x1 and x2 are moving points and therefore the results expressed in
equation (2.32) are required when taking the variation of this functional. This gives

δ(fs)Π̃3e = δ

∫ t2

t1

∫ x2

x1

[− 1
2φ,xφ,x − φ,t − gx] dxdt

−δ
∫ t2

t1

[
1
2K(x1 −X0)2 − 1

2M

(
dx1

dt

)2

+Mgx1

]
dt

=
∫ t2

t1

∫ x2

x1

[−φ,xδφ,x − δφ,t] dxdt

−
∫ t2

t1

[
K(x1 −X0)δx1 −M dx1

dt
δ

dx1

dt
+Mgδx1

]
dt

+
∫ t2

t1

{[ 1
2φ,xφ,x + φ,t + gx]|x=x1δx1 − [ 1

2φ,xφ,x + φ,t + gx]|x=x2δx2} dt.

(5.2)

The application of equation (2.17), Green’s theorem and the conditions δx1(t1) =
0 = δx1(t2) and δφ(t1) = 0 = δφ(t2) to this equation gives

δ(fs)Π̃3e =
∫ t2

t1

{∫ x2

x1

φ,xxδφ dx

+
[

1
2φ

2
,x(x1, t) + φ,t(x1, t) + gx1 −K(x1 −X0)−M d2x1

dt2
−Mg

]
δx1

+
[

dx2

dt
− φ,x(x2, t)

]
δφ(x2, t)−

[
dx1

dt
− φ,x(x1, t)

]
δφ(x1, t)

−[1
2φ

2
,x(x2, t) + φ,t(x2, t) + gx2]δx2

}
dt. (5.3)

Because of the independence of the variations δφ in the water domain Ωf = (x1, x2),
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δx1, δx2, δφ(x1, t) and δφ(x2, t), from δ(fs)Π̂3e = 0 the ordinary differential equations
describing the motion of the water–mass–spring interaction system are

φ,xx = 0, (x, t)ε(x1, x2)× (t1, t2), (5.4)
dx1

dt
− φ,x(x1, t) = 0,

dx2

dt
− φ,x(x2, t) = 0, (5.5)

1
2φ

2
,x(x2, t) + φ,t(x2, t) + gx2 = 0, (5.6)

M
d2x1

dt2
+K(x1 −X0) +Mg = 1

2φ
2
,x(x1, t) + φ,t(x1, t) + gx1. (5.7)

Here, equation (5.4) represents Laplace’s equation, the second equation of (5.5) and
equation (5.6) represent the free surface boundary conditions and the first equation
of (5.5) and equation (5.7) represent the interaction coupling conditions.

A solution satisfying equation (5.4) is

φ = a(t)x+ b(t), φ,x = a(t), φ,t =
da
dt
x+

db
dt
, (5.8)

where a(t) and b(t) are two arbitrary time functions, with a(t) representing a velocity.
Furthermore, from equations (5.5), (5.6) and (5.7), it follows that

x1 =
∫ t

t1

a(t) dt+X1, x2 =
∫ t

t1

a(t) dt+X2, (5.9)

gx2 +
da
dt
x2 +

db
dt

+ 1
2a

2 = 0 (5.10)

and

M
d2x1

dt2
+K(x1 −X0) +Mg = gx1 +

da
dt
x1 +

db
dt

+ 1
2a

2. (5.11)

The substitution of equation (5.10) into equation (5.11) gives

M
d2x1

dt2
+K(x1 −X0) +Mg =

(
g +

da
dt

)
(x1 − x2) = −

(
g +

da
dt

)
L, (5.12)

and from equation (5.9) it follows that

M
da
dt

+K

(∫ t2

t1

a(t) dt+X1 −X0

)
+ (M + L)g +

da
dt
L = 0. (5.13)

In the static equilibrium state,

K(X1 −X0) + (M + L)g = 0, (5.14)

and equation (5.13) reduces to

(M + L)
d2a

dt2
+Ka = 0, (5.15)

where a(t) denotes a velocity. This equation represents the dynamic equation of the
system, in which the mass of the incompressible water acts as an additional mass to
the piston.

(b ) An externally forced one-dimensional compressible gas–mass–spring dynamic
interaction problem

In this example, a one-dimensional compressible gas-structure dynamic interaction
system excited by an external force is examined. As shown in figure 4, this system
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consists of a horizontal gas column of unit sectional area, a piston of mass M and
a nonlinear spring K. The positions x0, x1 represent the interaction interface in
static equilibrium and at instant t during motion. If X0 denotes the position of the
interaction interface relating to the unstretched spring, the elastic force of the spring
is given by K(x1−X0)2. At initial time t1 = 0, the system is in its static equilibrium
position with gas pressure p0, density ρ0 and is excited by an external force F̂ (t)
applied to the piston.

(i) Dynamic equations derived from functional Π3e

If the static position x0 is chosen as a reference point of the potential energy of
the spring, the potential of the spring is determined by

A(x1) =
∫ x1

x0

K(x−X0)2 dx. (5.16)

In this example, the potential energy due to gravity can be neglected and the asso-
ciated functional given in equation (4.21) takes the form

Π3e[ρf , φ, x1] =
∫ t2

0

{∫ x1

0
ρf(− 1

2φ,xφ,x−φ,t−e) dx−
[
A− 1

2M

(
dx1

dt

)2

−x1F̂

]}
dt.

(5.17)
By taking the variation of this functional Π̂3e and using the second equation of (3.11)
and equation (5.16), it follows that

δ(fs)Π̂3e =
∫ t2

0

{∫ x1

0

[
δρf

(
− 1

2φ,iφ,i − φ,t − e−
p

ρf

)
− ρf(δφ,t + φ,xδφ,x)

]
dx

−[ρf( 1
2φ,iφ,i + φ,t + e)]|x1δx1

−[K(x1 −X0)2 − F̂ ]δx1 +M
dx1

dt
δ

dx1

dt

}
dt. (5.18)

The application of Green’s theorem, equation (2.17) and conditions δx1(0) = 0 =
δx1(t2) and δφ(0) = 0 = δφ(t2) gives

δ(fs)Π̂3e =
∫ t2

0

{∫ x1

0

[
δρf

(
− 1

2φ,iφ,i − φ,t − e−
p

ρf

)
+ (ρf,t + (ρfφ,x),x)δφ

]
dx

−
[
(ρf( 1

2φ,iφ,i + φ,t + e))|x1 +K(x1 −X0)2 − F̂ +M
d2x1

dt2

]
δx1

+
[
ρf

(
dx1

dt
− φ,x

)
δφ

] ∣∣∣∣
x1

+ (ρfφ,xδφ)|0
}

dt. (5.19)

Because of the independence of the variations δx1, δρf in the fluid domain (0, x1),
δφ in the fluid domain (0, x1) and at points x1 and x = 0, from δ(fs)Π̂3e = 0, the
following set of equations describing the dynamical problem illustrated in figure 4
are derived:

M
d2x1

dt2
+K(x1 −X0)2 = F̂ − [ρf( 1

2φ,iφ,i + φ,t + e)]|x1 ,

(x, t)ε(0, x1)× (0, t2), (5.20)
1
2φ,iφ,i + φ,t + e+

p

ρf
= 0, (x, t)ε(0, x1)× (0, t2), (5.21)

ρf,t + (ρfφ,x),x = 0, (x, t)ε(0, x1)× (0, t2), (5.22)
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gas p

M
K

xo

x0

x
1

ρ

Figure 4. A one-dimensional compressible gas–mass–spring interaction system

ρf

(
dx1

dt
− φ,x

)
= 0, x = x1, (5.23)

ρfφ,x = 0, x = 0. (5.24)

Here, equation (5.20) represents the dynamic interaction mechanism within this
forced system, equation (5.21) Bernoulli’s equation, equation (5.22) the compress-
ibility of the gas and equations (5.23) and (5.24) boundary conditions.

(ii) Approximate solution derived by functional Π3e

Here, an approximation method is described to solve the posed problem. Let us, for
simplification purposes, treat the density of the gas as a function of time t only. This
implies the gas remains homogeneous throughout the motion. The internal energy
e is determined from equation (3.13) and the velocity potential takes the following
approximate form:

φ(x, t) = 1
2q(t)x

2, φ,t = 1
2

dq
dt
x2, φ,x = qx, (5.25)

where q(t) is an unknown function of time to be determined. It is easy to check
that the selected solution φ(x, t) in equation (5.25) satisfies the boundary condition
(5.24). However, this is not a requirement of the constraints for functional Π3e. The
substitution of this solution into functional (5.17) and its integration with respect to
x gives

Π3e[ρf , q, x1] =
∫ t2

0

{
ρf

(
− 1

6q
2x3

1 − 1
6

dq
dt
x3

1 − ex1

)
−
[
A− 1

2M

(
dx1

dt

)2

− x1F̂

]}
dt.

(5.26)
Through an integration by parts and the time instant conditions δq(0) = 0 = δq(t2)
and δx1(0) = 0 = δx1(t2), the variation of this functional takes the form

δ(fs)Π3e[ρf , q, x1] =
∫ t2

0

{
δρf

(
− 1

6q
2x3

1 − 1
6

dq
dt
x3

1 − ex1 − p

ρf
x1

)
−
(

1
3qx

3
1 − 1

2x
2
1
dx1

dt

)
δq −

[
ρf

(
1
2q

2x2
1 + 1

2

dq
dt
x2

1 + e

)
+ K(x1 −X0)2 − F̂ +M

d2x1

dt2

]
δx1

}
dt. (5.27)
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Therefore, from δ(fs)Π3e = 0 and the independence of the variations δρf , δq and δx1,
the set of equations obtained are

M
d2x1

dt2
+K(x1 −X0)2 = F̂ − ρfe− 1

2ρf

(
q2 +

dq
dt

)
x2

1, (5.28)

1
6ρf

(
q2 +

dq
dt

)
x2

1 + ρfe+ p = 0, (5.29)

1
3qx1 − 1

2

dx1

dt
= 0. (5.30)

These equations form a system of ordinary differential equation with arguments x1(t),
q(t) and ρf(t) supplanting the system of partial differential dynamic equations given
in equations (5.20)–(5.24). Through equation (3.13) and the imposition of realistic
initial conditions, a solution can be derived subject to the imposed limitation of the
model.

6. Conclusion

A family of variational principles describing the dynamical behaviour of nonlinear
fluid–solid interaction systems is developed and each member discussed. The math-
ematical model is based on the concept of Hamilton’s principle and the fundamental
equations of continuum mechanics. The variational principles admit variable bound-
aries and their forms reflect the assumptions inherent to the model (i.e. compressible
fluid, flow rotational, etc.). Variational principles obtained previously to determine
the dynamic characteristics of an elastic body in solid mechanics, fluid flows in fluid
dynamics and fluid–solid interaction are derived from the presented variational prin-
ciples by the introduction of the appropriate assumptions and/or boundaries.

The development of the variational principles creates a rigorous theoretical foun-
dation to build computational models such as finite element methods and numerical
schemes of study (see, for example, Zienkiewicz & Taylor 1989, 1991; Xing et al.
1996) to solve complex nonlinear fluid–structure dynamic interaction problems in
engineering.

J.T.X. expresses his deep appreciation to NSFC for supporting the related research in China.

Appendix A. Nomenclature

A function of strain energy per unit volume of solid
B function of kinetic energy per unit volume of solid
e internal energy per unit mass of fluid
eijk permutation tensor
Eij Green’s strain tensor
f̂i vector of body force per unit mass of fluid
F̂i vector of body force per unit volume of solid
g acceleration due to gravity
h unknown function of (x1, x2, x3, t) describing motion

on the free surface Γf
J Jacobian of a transformation
N translation velocity of a curved surface in space
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p pressure field of fluid
Pi, P momentum vector of solid, P = (P1, P2, P3)
s entropy per unit mass of fluid
S surface of solid domain ΩS (= SU ∪ ST ∪ Σ )
SU part of S with prescribed displacement Ûi
ST part of S with prescribed traction T̂i
t time variable
t1 initial time of motion
t2 final time of motion
T temperature
T̂i traction vector prescribed on surface ST of solid
ui, u displacement vector of continuum, u = (u1, u2, u3)
δuη normal component of δxi on free surface Γf (= δxiηi)
Ui, U displacement vector of solid, U = (U1, U2, U3)
Ûi displacement vector prescribed on surface SU of solid
δUν normal component of δUi on interaction boundary Σ (= δUiνi)
δUξ tangent component of δUi on interaction boundary Σ (= δUiξi)
vi velocity field of fluid
Vi, V velocity vector of solid, V = (V1, V2, V3)
Wi, W acceleration vector of solid, W = (W1,W2,W3)
xi, x spatial coordinates, x = (x1, x2, x3)
Xi, X material coordinates, X = (X1, X2, X3)
α(x, t) a field function chosen as a material coordinate of the continuum
β temperature displacement
γ ratio of the constant specific heats of an ideal gas
Γ surface of fluid domain Ωf (= Γf ∪ Γv ∪ Γφ ∪ Σ )
Γf free surface of fluid
Γv part of Γ with prescribed normal velocity of fluid v̂η
Γφ part of Γ with prescribed velocity potential φ̂ and mass density ρ̂f
ΓF surface of fluid domain ΩF
ΓM surface of fluid domain ΩM
δij Kronecker delta tensor
ε parameter of variation (−1 < ε < 1)
ε symbol to denote the meaning ‘belonging to’
ζ Clebsch potential corresponding to α
ηi unit vector along outer normal of Γ
θ transmission velocity of a curved surface in space
νi unit vector along outer normal of S
ξi unit vector along tangent direction of Σ
ρ mass density of continuum
ρf mass density of fluid
ρ̃f prescribed constant mass density of incompressible fluid
ρS mass density of solid
σij second Kirchhoff stress tensor
Σ fluid–solid interaction interface between Ωf and ΩS
τij Piola stress tensor
υ specific volume of fluid (= 1/ρf)
φ velocity potential of fluid
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ψ enthalpy per unit mass of fluid
ωi vorticity of velocity field
Ωf fluid domain
Ω̂f closed fluid domain (= Ωf ∪ Γ )
ΩF fixed domain in space
ΩM material domain in continuum
ΩS solid domain
Ω̂S closed solid domain (= ΩS ∪ S)
i, j, k indices (= 1, 2, 3) of a tensor, obeying the summation convention
d()/dt time derivative of () (= (̇))
D()/Dt material derivative of ()
grad() gradient of ()
(),t = ∂()/∂t
(),i = ∂()/∂xi or = ∂()/∂Xi

δ() local variation of ()
δ() material variation of ()
δ(fs)() variation of () (= δ() for fluid but δ() for solid)
∼ denotes equality for terms of order 1 relative to ε
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